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Some Notes on Phase Derivatives and Simulating Strong Ground Motions

David M. Boore

Abstract

Phase derivatives can be used to compute instantaneous frequency and envelope delay

(also known as group delay). Envelope delay, in the guise of phase differences, has been

used by engineers in the simulation of strong ground motion, particularly as a way of

controlling the duration of motion. Simulations using the stochastic method, in which

duration is a simple function of source duration and a path-dependent duration, possess

envelope delay properties similar to those from simulations based on phase differences.

Envelope delay provides a way of extending the standard stochastic method to produce

nonstationary frequency content, as produced by ground motions containing surface waves.

Introduction

For many years, seismologists have used the derivative of the phase spectrum of

ground motion to compute group velocities and to simulate waveforms of dispersed waves

(e.g., Aki, 1960 [see also Aki and Richards, 2002, problem 7.8]; Dziewonski et al., 1969;

Dziewonski and Hales, 1972). The use of group velocity to determine the relative arrivals

of motion at different frequencies for multiple modes has been used by Trifunac and

colleagues (e.g., Trifunac, 1971, and Wong and Trifunac, 1979) to simulate strong ground

motion. In the engineering literature a number of papers have appeared in which “phase

differences” play a central role in simulating earthquake ground motions (e.g., Ohsaki,

1979; Ohsaki et al., 1984; Sawada, 1984; Thráinsson et al., 2000; Shrikhande and Gupta,

2001; Montaldo et al., 2002; Thráinsson and Kiremidjian, 2002), but aside from a scalar

factor involving the frequency increment, these “phase differences” are nothing more than a
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finite-difference approximation of the derivative of the phase with respect to frequency, and

thus are an approximation of the group delays, well known in studies of dispersed waves

(e.g., Udias, 1999). This paper has several purposes: to acquaint engineers with work of

seismologists involving group delays and vice versa, and to introduce an extension of the

widely-used stochastic method for simulating strong-ground motions (Boore, 2003) that

will produce simulated motions with nonstationary frequency content, such as produced

by basin waves (e.g., Boore, 1999; Joyner, 2000). This extension uses frequency-dependent

phase derivatives.

Because I will be using the phase derivative of records that are not clearly dispersive,

I will henceforth call the derivative of phase with respect to frequency the envelope delay, a

term sometimes found in the electrical engineering literature. There are several advantages

to using the envelope delay rather than phase differences. The envelope delay has units

of time, and it has a natural physical interpretation that makes it clear why the phase

differences are not random, even though the phases may appear to be so. In addition, by

using Fourier transforms it is easy to compute the envelope delay without first unwrapping

the phase and then using finite difference approximations for the derivative. The same

procedure can be used to compute the instantaneous frequency of a time series without

unwrapping the phase. This can be useful in identifying spikes in records and in assessing

nonstationarity of the ground motion. The paper begins with the equations for computing

phase derivatives, followed by a section showing examples of using the derivatives for

recorded and simulated ground motions, and concludes with the extension to the stochastic

method mentioned above.

Theory

Because phase derivatives appear in different contexts in this paper, the derivation

here considers a generalized Fourier transform pair:

h(η) =
∫ ∞

−∞
H(ξ)e−i2πξη dξ (1a)

H(ξ) =
∫ ∞

−∞
h(η)ei2πξη dη. (1b)
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h(η) and H(ξ) are complex variables and can be written in terms of their amplitude and

phase. (Note that a scaling factor involving 2π is not needed because the factor of 2π has

been separated out from the integration variables— in more familiar terms, I am using

frequency rather than angular frequency in the transform pair [Press et al., 1992, pp.

490-491].) To simplify notation, in this paper I will work only with H(ξ) written in this

way:

H(ξ) = A(ξ)eiφ(ξ). (2)

Obtaining the amplitude A(ξ) and phase φ(ξ) is straightforward, e.g., by computing the

Fast Fourier Transform (H(ξ)) of h(η), from which

A(ξ) =
√
<(H)2 + =(H)2 (3)

and

φ(ξ) = arctan(=(H)/<(H)), (4)

where “<(H)” and “=(H)” are the real and imaginary parts of the complex variable H,

respectively.

Of particular interest in this paper is dφ(ξ)/dξ. There are two situations in which

this arises: envelope delay and instantaneous frequency. Details concerning each are in the

following sections.

Because the phase given by equation (4) is wrapped between −π and π, a straight-

forward finite-difference computation of the phase derivative first requires unwrapping the

phase— not necessarily easy to do (Shatilo, 1992). A useful way to compute the phase

derivative that does not require unwrapping the phase starts with taking the logarithm of

equation (2) (Claerbout, 1992):

ln H(ξ) = ln A(ξ) + iφ(ξ). (5)

Taking the derivative with respect to ξ then gives

dφ

dξ
= =(

1
H

dH

dξ
). (6)
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Differentiating equation (1b), it is easy to show that

dH(ξ)/dξ = i2πG(ξ) = i2π[<(G) + i=(G)], (7)

where G(ξ) is the Fourier transform of ηh(η):

G(ξ) =
∫ ∞

−∞
ηh(η) exp i2πξηdη. (8)

Combining equations (6) and (7) gives

dφ

dξ
= 2π[<(H)<(G) + =(H)=(G)]/A2. (9)

This gives the phase derivative of φ in terms of the Fourier transform of h(η) and ηh(η),

with no explicit derivatives needed (Stoffa et al., 1974, eq. 34). The derivative given by

equation (9) can be poorly behaved for values of ξ for which A(ξ) becomes small. This is

particularly a problem when A(ξ) represents the envelope of a time series, and dφ/dξ is

the instantaneous frequency. In such cases it is useful to smooth the denominator and the

numerator separately before taking the ratio in equation (9). A simple triangular weighting

function works well for smoothing.

Note that any operation on H(ξ) that leaves the ξ-dependence of the phase φ

unchanged will not alter the phase derivative. As will be made clear later, this

means that the envelope delay will be the same regardless of whether the time series

represents acceleration, velocity, or displacement, because their phases differ by frequency-

independent increments of 90◦. The instantaneous frequency, however, is given by the time

derivative of the phase, and the time dependence of the phase, and thus the instantaneous

frequency, will depend on whether the time series represents acceleration, velocity, or

displacement.

Data Used in Examples

To illustrate envelope delay and instantaneous frequency, I consider two recorded

ground motions, one with relatively long-period surface waves that arrive after the body
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waves, and one for which most of the energy content occurs in the same time window (the

record is that used by Thráinsson and Kiremidjian, 2002, to illustrate some properties of

phase differences). To see the relative arrival times of the different parts of the spectrum,

it is best to plot a series of band-pass filtered motions. Instead, I use acceleration, velocity,

and displacement traces as familiar surrogates for band-pass filtered motions. The results

for the two recordings are shown in Figure 1. Note that the overall waveshapes for the

Santa Cruz recording are rather similar for acceleration, velocity, and displacement, in

distinct contrast to the waveshapes of the S3E recordings. The long-period late arrivals on

the S3E record are surface waves that have traversed the Los Angeles basin (Boore, 1999).

Envelope and Instantaneous Frequency

Starting with a time series y(t), form the complex time series yc(t)

yc(t) = y(t) − iỹ(t), (10)

where ỹ(t) is the Hilbert transform of y(t) (yc(t) is sometimes called the “analytic signal”).

The transform Yc(f) of yc(t) is given most conveniently by

Yc(f) =
{

0.0, f < 0.0 (11a)
2Y (f), f ≥ 0.0 (11b)

where Y (f) is the Fourier transform of y (Mitra, 2001, p. 794). Then use the mapping

h(η) → Yc(f) (12a)

H(ξ) → yc(t) (12b)

and the mapping of η and ξ to time and frequency

ξ → t, η → f.

The envelope of y(t) is given by the envelope of the amplitude of H; this is

A(t) =
√

y(t)2 + yc(t)2. (13)
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The derivative of the phase is used in the equation

fI(t) =
1
2π

dφ

dt
(14)

to give the time-dependent instantaneous frequency fI (Farnbach, 1975, Taner et al.,

1979; Kanasewich, 1981; Bracewell, 1999). The phase used to compute the instantaneous

frequency is given by

φ(t) = − arctan ỹ(t)/y(t). (15)

The time dependence of the phase, and thus fI(t), will depend on whether y(t) represents

acceleration, velocity, or displacement.

Examples of the envelope of a time series are shown in Figure 1 and the instantaneous

frequencies are shown in Figure 2. For the S3E recording the instantaneous frequency

shows a decrease with time, and as predicted, depends on the type of motion for which

it is computed. I have not found instantaneous frequency to be a very useful quantity,

although it has been used occasionally in seismology (e.g., Levshin et al., 1992).

Envelope Delay

This paper is primarily concerned with the envelope delay because of its use in

simulating strong ground motions. If y(t) is a time series, use the following mapping:

h(η) → y(t) (16a)

H(ξ) → Y (f) (16b)

and

η → t, ξ → f.

(Since h and H are generalized variables, I did not have to switch the mapping of η and

ξ to t and f compared to that used for instantaneous frequency; I changed the mapping,

however, because I wanted to use only one equation — equation (2) — relating a complex

variable and amplitude and phase.) With this mapping,

te(f) =
1
2π

dφ

df
(17)
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where, in the context of dispersive wave propagation (but also useful in general, as shown

in this note), te is the frequency-dependent envelope delay (Kanasewich, 1981; Scherbaum,

2001, p. 190 [but with a minus sign because of his definition of the Fourier spectrum of

y(t)]).

The envelope delay as a function of frequency for the two example acceleration records

are shown in Figure 3. (In this and almost all other plots of envelope delay, I plot envelope

delay on the abscissa even though it is the dependent variable; I do this to facilitate

comparison with ground-motion time series, for which time is plotted on the abscissa.)

The envelope delays clearly show the difference in the relative arrival times of different

frequencies. The envelope delay for the Santa Cruz recording of the 1989 Loma Prieta

earthquake is relatively insensitive to frequency (with a tendency for higher frequencies

to arrive several seconds earlier than low frequencies), and the majority of the envelope

delay values occur near 9 sec, which corresponds to the time of the peak in the envelope of

the ground motion. (If the time series had been shifted in time, the envelope delay values

would have been shifted by the same amount.) The envelope delays for the S3E recording

indicate a strong nonstationarity in frequency content for frequencies less than about 5

Hz, with the lower frequencies arriving later than the higher frequencies; this is consistent

with the displacement waveform shown in Figure 1. The centroid time of the energy at a

particular frequency is related to the mean value of the envelope delay at that frequency,

but the overall time-extent of the motion is determined by the statistical distribution of

the envelope delay about the mean value.

The envelope delay for S3E shown in Figure 3 was computed from the acceleration

time series and shows a strongly nonstationary frequency content, even though this

nonstationarity is not particularly evident in the acceleration time series. This is consistent

with theoretical expectations. To make the point empirically, envelope delays computed

from the acceleration, velocity, and displacement traces for the S3E recording are shown

in Figure 4. The delays are almost identical.

In addition to analysis of dispersion and the simulation of strong motion, envelope
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delay has been used to aid in choosing corner frequencies of low-cut filters used in processing

strong-motion accelerograms (N. Abrahamson, written. commun., 1993). Digitizing noise

will dominate the signal at long periods, and this will show up as a shift of the envelope

delay at low frequencies to smaller values (earlier arrivals, corresponding to amplification

of the noise before the arrival of the seismic energy) and increased scatter in the delays as

the filter frequency is decreased.

The Relation Between Probability Distribution of Envelope Delay

and Waveform Shape and Duration

Ohsaki (1979) made the qualitative observation that the shape of the envelope of an

acceleration time series and the probability distribution function (pdf) of phase differences

are similar, and furthermore that the distribution of the phase differences appeared to

be similar in shape to a normal distribution. Nigam (1982, 1984) derived an analytic

expression for the distribution of the phase difference of a random process corresponding

to Gaussian white noise multiplied by a time-domain shaping function; Nigam remarked

that the distribution is not normal. (The equation for the distribution in Nigam, 1982,

differs from that in Nigam, 1984 — the later equation predicts a bimodal distribution, but

my simulations show that it is incorrect, and that the earlier equation is correct.) Other

authors have studied phase differences as a means of characterizing and simulating ground

motions (e.g., Ohsaki et al., 1984; Sawada, 1984; Thráinsson et al., 2000; Shrikhande and

Gupta, 2001; Montaldo et al., 2002; Thráinsson and Kiremidjian, 2002). Liao and Jin

(1995) explicitly use the derivative of the phase, rather than phase difference. Here I use

simulations to investigate Ohsaki’s observation, using envelope delays rather than phase

differences (another reason to use envelope delays rather than phase differences is that the

independent variable of the probability distribution is time rather than radians, and plots

of the pdf can be compared directly to the envelope of the times series).

The simulation method is the widely-used stochastic method (see Boore, 2003, for a

review). The stochastic method represents possibly complex physics with simple functional

forms, attempting to account for the essence of the physics; it combines seismological theory
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and the engineering notion that ground motion is a random process. Of particular interest

in this paper is the duration of the random process, given in the stochastic method by the

addition of the source duration and an empirically derived duration related to distance

traveled between the source and the site. This results in a nonstationary random process

in the sense that the process is of limited duration, but the frequency content of the

motion is stationary. In a later section I describe a way of using envelope delay to produce

nonstationary frequency content in the context of the stochastic method.

The stochastic method does not make explicit use of the statistical properties of the

envelope delay, as does the simulation method of Thráinsson et al. (2000), Montaldo et al.

(2002), and Thráinsson and Kiremidjian (2002). In particular, those authors use empirical

distributions of the phase differences as a function of frequency and as a function of the

Fourier amplitude spectra. I thought it would be interesting to see if the distributions of

the envelope delay from the stochastic-method simulations are similar to those from data. I

will compare the Santa Cruz recording of the 1989 Loma Prieta, California, earthquake and

my simulations using a generic model for a coastal California rock site (file “wr032496.dat”

in Boore, 2000). The simulations were computed for a magnitude of 6.9 and a distance of

10 km; no attempt was made to adjust the parameters of the model to match the data.

Two envelope functions were used in the simulations: a box window and a more realistic

shaped window made up of time raised to a power multiplied by an exponential decay (see

Boore, 2000, for details). The envelope delay is plotted against frequency in Figure 5 for

the first of a suite of simulations. Also plotted in the figure is the envelope delay for the

Santa Cruz recording. The distributions of envelope delays are qualitatively similar, except

for the differences in the mean values (which are dependent on the arbitrary origin time of

each record and have nothing fundamental to do with the waveforms of the ground motion).

The comparison of the data used to obtain the amplitude information by Thráinsson and

colleagues is shown in Figure 6; again, there is good qualitative agreement between the

simulations and the data. By using envelope delay rather than phase differences, it is easier

to understand the character of the plot shown in Figure 6: the largest amplitudes occur

over a relatively narrow range of time, whereas the smaller motions (e.g., coda waves) are
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spread out over a longer portion of time. This leads to a spreading of the distribution of

envelope delay as the amplitude decreases.

Knowing that the stochastic method produces envelope delay properties in good

qualitative agreement with those from data, I simulated 99 acceleration time series for

both the box and the shaped windows. The top two panels in Figure 7 show the time

series for the first of the 99 simulations (in gray), along with the mean envelope of the

simulations. Also shown is the probability distribution of the envelope delay, using the

formula from Nigam (1982). (A technical aside: Nigam’s formula is based on a model in

which filtered white noise is windowed, but Şafak and Boore, 1988, show that this procedure

— commonly used by engineers — distorts the low-frequency portion of the spectrum. The

stochastic method simulations used in Figure 7 do not contain this distortion, and therefore

the models of the random process assumed by Nigam, 1982, and used in the stochastic

method simulations are not strictly comparable; the difference, however is not important

for the comparison shown in Figure 7.) From this figure it is clear that the probability

distribution of the envelope delay has only a passing similarity to the average envelope of

the acceleration time series, and that the pdf for both the box and the shaped window are

very similar. The bottom two plots compare the histograms of the envelope delay with

the pdf from Nigam; this comparison simply serves as a qualitative check of his equation

(I made the decision that a more quantitative comparison was not warranted, because no

further use will be made of the theoretical pdf).

Using Envelope Delay to Account for Time-Dependent

Frequency Content in Stochastic-Method Simulations

The standard stochastic method does not account for nonstationarity of frequency

content of the ground motion, which can be important in some situations, particularly

when basin waves are present (as they are for the S3E recording of the 1990 Upland

earthquake, used as one of the two examples in this paper). Basin waves can significantly

increase the amplitude at long periods, as well as lead to increased durations of these

motions. The increase of motions at long periods is shown in Figure 8, which compares
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response spectra with and without the basin waves, with predictions based on the standard

stochastic method and with empirical ground-motion predictions. Frequency-dependent

envelope delay provides a way to extend the stochastic method to allow for nonstationarity

of the frequency content. This section illustrates an initial attempt to do this. There are

two parts to the extension: 1) account for the increased duration of the longer period

waves, and 2) account for the increased amplification of the basin waves.

I accounted for the increased duration by first fitting a simple function to the envelope

delay (the derivative of phase with respect to frequency), and then integrating this

functional form with a constant of integration chosen to give zero incremental phase at high

frequencies. I applied this phase correction to the time series simulated in the standard

way for the stochastic method (Boore, 1983, 2003). After plotting the envelope delay for

the S3E record in various ways, I found that using a log axis for the abscissa suggested

that a simple straightline fit of the envelope delay as a function of log frequency was a

good representation of the observed envelope delays (Figure 9).

As shown by the relatively good agreement between the stochastic model simulations

and the response spectra computed without the basin waves (Figure 8), the amplification

function used in the simulation of the motion without basin waves was reasonable. To

account for the basin waves, I computed the ratio of the Fourier spectra of the complete

S3E record and the portion of the record up to 50 s (effectively removing the basin waves).

The individual spectra and the spectral ratio are shown in the upper plot Figure 10.

I smoothed the ratio slightly, and approximated the ratio by a series of connected line

segments (these are also shown in the upper part of Figure 10). The amplification without

the basin waves (as used in the AB98 model simulations shown in Figure 8), the basin wave

amplification, and the combined amplification are shown in the lower plot of Figure 10.

In addition to the amplification, the simulation included a diminution function given by

path-dependent attenuation and the path-independent attenuation function exp (−πκ0f),

where κ0 = 0.0516 (see Boore, 1999, for details).

By combining the additional amplifications and the phase corrections, it is possible
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to include the basin waves by making simple modifications to the software that produces

stochastic-method time-domain simulations (e.g., SMSIM; see Boore, 2000, 2002). The

results of doing so are shown in Figure 11, which compares the predicted motions at S3E

(74 km from a moment magnitude 5.6 earthquake) without basin waves, with the basin

wave amplifications, with the basin wave amplifications and the nonstationary frequency

content, and the observations. As this is only an illustration of a concept, I am not trying

to match exactly the observed waveforms (this could undoubtedly be done by varying the

input parameters). The general character of the duration and amplitude of the basin waves

has been captured by this simple modification to the standard stochastic method. The

modification could also be used by other simulation methods for which the usual method

results in stationary frequency content (e.g., FINSIM, Beresnev and Atkinson, 1998).

The simulations in Figure 11 are clearly specific for the S3E record. An important

question is whether the necessary amplification and duration properties can be determined

for an arbitrary site within a basin. This question is beyond the scope of this paper, but

duration should be related to group velocities of surface waves propagating in the basin,

and thus is potentially predictable. On the other hand, a number of studies of basin

amplification find that amplification depends on source location (some of these studies

have been reviewed in Field and the SCEC Phase III Working Group, 2000). Unless some

way is found to capture the essence of this amplification without doing a complete finite-

difference calculation, this may make it difficult to account for basin response at specific

source and site pairs using the simple extension to the stochastic method proposed here.

Discussion and Conclusions

Phase derivatives are useful in determining instantaneous frequency and the envelope

delay of time series. These derivatives can be computed using Fourier transforms, without

unwrapping the phase and forming finite-difference approximations. As illustrated by

ground-motion recordings with and without basin waves, the envelope delay contains

information about the duration of ground motion, including nonstationary frequency

content.
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The statistical properties of envelope delay as a function of frequency and amplitude

have been used in simulations of ground motion (e.g., Thráinsson and Kiremidjian, 2002). I

find that the envelope delays for simulations using the stochastic method, in which duration

is given by the addition of a simple distance-dependent duration and the source duration,

and amplitude is determined by standard seismological models of Fourier spectra of the

source, path, and site, have statistical properties qualitatively similar to those from data.

Envelope delay has the advantage over phase differences that it can be interpreted more

directly in terms of the duration and waveforms of ground motion, and in addition, can

be used to extend stochastic simulations of ground motion to account for nonstationary

frequency content.
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Figure Captions

Figure 1. Acceleration, velocity, and displacement horizontal-component time series

and envelopes (for the displacement) for the ocean bottom (S3E) recording of the 1990

Upland, California, M 5.6 earthquake (orientation of horizontal component unknown,

low-cut filtered at 0.1 Hz: see Boore and Smith, 1999; Boore, 1999; data available

from http://quake.usgs.gov/˜boore) and for the U.C. Santa Cruz (Lick Lab.) recording

of the 1989 Loma Prieta, California, M 6.9 earthquake (east-west component, low-

cut filtered with a ramp from 0.05 to 0.1 Hz, data from the California Strong Motion

Instrumentation Program, ftp://ftp.consrv.ca.gov/pub/dmg/csmip/LomaPrieta89/). rep

and rjb are epicentral and Joyner-Boore distances, respectively (see Abrahamson and

Shedlock, 1997). Note the different time scales for the two recordings.

Figure 2. Instantaneous frequency (gray lines) for the Santa Cruz recording of the

1989 Loma Prieta, California, earthquake and the S3E recording of the 1990 Upland,

California, earthquake. The ordinate labels for the instantaneous frequency are given on

the right axes. The top two panels are for acceleration, and the same scaling has been used

for instantaneous frequency in both panels. Note that the scaling for the instantaneous

frequency differs for the acceleration, velocity, and displacement time series in the bottom

three panels. The instantaneous frequency was smoothed with a triangular smoothing

operator having a base width of 5 sec.



Figure 3. Frequency vs. envelope delay for acceleration for the two acceleration

traces shown in Figure 1. Note the different scales for the envelope delay times, and the

correspondence of the envelope delays with the times of ground shaking (as seen from

Figure 1). In particular, note that the envelope delay for the S3E record shows a strong

dependence on frequency, with lower frequencies corresponding to greater values of the

envelope delay, as would be predicted from Figure 1. In contrast, the envelope delays for

the Santa Cruz recording of the Loma Prieta earthquake show little frequency dependence,

also as expected from the relative times of the envelopes of the acceleration, velocity, and

displacements shown in Figure 1. The density of points along the ordinate is greater for the

S3E recording than for the Santa Cruz recording (a factor of 4) because the S3E recording

has a longer duration than the Santa Cruz recording, and therefore the interval between

adjacent frequencies is smaller. The envelope delays were not smoothed.

Figure 4. Frequency vs. envelope delay for acceleration, velocity, and displacement

time series for the S3E recording of the 1990 Upland, California, earthquake. As expected,

the envelope delays are almost identical. The envelope delays were not smoothed.

Figure 5. Frequency vs. envelope delay for simulation 1 (see text), using box and

shaped windows, and for comparison, the envelope delay from the Santa Cruz recording

of the 1989 Loma Prieta, California, earthquake. The frequency interval between points

is the same for each plot, as is the scaling of the abscissa. The envelope delays were not

smoothed.

Figure 6. Envelope delay vs. amplitude for simulation 1 (see text), box and shaped

windows, and for the Santa Cruz recording of the 1989 Loma Prieta, California, earthquake.

The scalings of the abscissa and ordinate are the same for all plots. The envelope delays

were not smoothed.



Figure 7. Probability density distributions (normalized to have unit area) of envelope

delays from individual simulations, average of 99 simulations, and Nigam (1982) for box

and shaped windows are shown in the bottom two graphs. Note the similarity of the

probability density distributions for the two windows. The top two graphs show the

acceleration time series from simulation 1 (see text), using box and shaped windows, as

well as the average envelope from 99 simulations. Also shown in the top two graphs is the

theoretical probability density distribution (right axis) from Nigam (1982).

Figure 8. Observed and predicted 5%-damped pseudo relative velocity response

spectra (PSV ) for the horizontal components of motion at station S3E from the 1990

Upland, California, earthquake. The solid lines are from the data: the thick and thin lines

are the PSV from the whole record and from the S-wave portion of the record (the first

50 seconds of record shown in Figure 1), respectively. The spectra are the geometric mean

of the spectra for the two horizontal components. The dashed lines are from empirical

regression equations published by Abrahamson and Silva (1997) and Boore et al. (1997),

and the dots are theoretical predictions assuming body-wave arrivals and the source model

of Atkinson and Boore (1998) (AB98). (modified from Boore, 1999.)

Figure 9. Envelope delay for the recording of the 1990 Upland, California, earthquake

at station S3E, with log axis for the abscissa. The straight lines were fit by eye and were

used to represent the mean envelope delay for use in the stochastic modeling. The envelope

delays were not smoothed.

Figure 10. (upper) Fourier amplitude spectra (FAS) of the acceleration recording

of the 1990 Upland, California, earthquake at station S3E , smoothed over 0.01 Hz,

for the complete record and the first 60 sec of the record (see Figure 1 for a plot

of the acceleration time series) (gray lines), along with the computed spectral ratio

and straightline approximation of the spectral ratio (black lines); (lower) amplification

functions as used in the simulations with and without the basin waves, along with the

basin-only amplifications.



Figure 11. Simulation using frequency-dependent correction to phase given by

envelope delay of the 1990 Upland, California, earthquake recorded at station S3E, as

well as the relative site response as discussed in the text. Shown are the acceleration,

velocity, and displacement of the simulations (with and without basin amplification and

envelope delay), and the observed motions at S3E from the 1990 Upland earthquake (74

km epicentral distance and M 5.6).
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Figure 1. Acceleration, velocity, and displacement horizontal-component time series
and envelopes (for the displacement) for the ocean bottom (S3E) recording of the 1990
Upland, California, M 5.6 earthquake (orientation of horizontal component unknown,
low-cut filtered at 0.1 Hz: see Boore and Smith, 1999; Boore, 1999; data available
from http://quake.usgs.gov/˜boore) and for the U.C. Santa Cruz (Lick Lab.) recording
of the 1989 Loma Prieta, California, M 6.9 earthquake (east-west component, low-
cut filtered with a ramp from 0.05 to 0.1 Hz, data from the California Strong Motion
Instrumentation Program, ftp://ftp.consrv.ca.gov/pub/dmg/csmip/LomaPrieta89/). rep

and rjb are epicentral and Joyner-Boore distances, respectively (see Abrahamson and
Shedlock, 1997). Note the different time scales for the two recordings.
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Figure 2. Instantaneous frequency (gray lines) for the Santa Cruz recording of the
1989 Loma Prieta, California, earthquake and the S3E recording of the 1990 Upland,
California, earthquake. The ordinate labels for the instantaneous frequency are given on
the right axes. The top two panels are for acceleration, and the same scaling has been used
for instantaneous frequency in both panels. Note that the scaling for the instantaneous
frequency differs for the acceleration, velocity, and displacement time series in the bottom
three panels. The instantaneous frequency was smoothed with a triangular smoothing
operator having a base width of 5 sec.
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Figure 3. Frequency vs. envelope delay for acceleration for the two acceleration
traces shown in Figure 1. Note the different scales for the envelope delay times, and the
correspondence of the envelope delays with the times of ground shaking (as seen from
Figure 1). In particular, note that the envelope delay for the S3E record shows a strong
dependence on frequency, with lower frequencies corresponding to greater values of the
envelope delay, as would be predicted from Figure 1. In contrast, the envelope delays for
the Santa Cruz recording of the Loma Prieta earthquake show little frequency dependence,
also as expected from the relative times of the envelopes of the acceleration, velocity, and
displacements shown in Figure 1. The density of points along the ordinate is greater for the
S3E recording than for the Santa Cruz recording (a factor of 4) because the S3E recording
has a longer duration than the Santa Cruz recording, and therefore the interval between
adjacent frequencies is smaller. The envelope delays were not smoothed.
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Figure 6. Envelope delay vs. amplitude for simulation 1 (see text), box and shaped
windows, and for the Santa Cruz recording of the 1989 Loma Prieta, California, earthquake.
The scalings of the abscissa and ordinate are the same for all plots. The envelope delays
were not smoothed.
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Figure 7. Probability density distributions (normalized to have unit area) of envelope
delays from individual simulations, average of 99 simulations, and Nigam (1982) for box
and shaped windows are shown in the bottom two graphs. Note the similarity of the
probability density distributions for the two windows. The top two graphs show the
acceleration time series from simulation 1 (see text), using box and shaped windows, as
well as the average envelope from 99 simulations. Also shown in the top two graphs is the
theoretical probability density distribution (right axis) from Nigam (1982).
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Figure 8. Observed and predicted 5%-damped pseudo relative velocity response
spectra (PSV ) for the horizontal components of motion at station S3E from the 1990
Upland, California, earthquake. The solid lines are from the data: the thick and thin lines
are the PSV from the whole record and from the S-wave portion of the record (the first
50 seconds of record shown in Figure 1), respectively. The spectra are the geometric mean
of the spectra for the two horizontal components. The dashed lines are from empirical
regression equations published by Abrahamson and Silva (1997) and Boore et al. (1997),
and the dots are theoretical predictions assuming body-wave arrivals and the source model
of Atkinson and Boore (1998) (AB98). (modified from Boore, 1999.)
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Figure 10. (upper) Fourier amplitude spectra (FAS) of the acceleration recording
of the 1990 Upland, California, earthquake at station S3E , smoothed over 0.01 Hz,
for the complete record and the first 60 sec of the record (see Figure 1 for a plot
of the acceleration time series) (gray lines), along with the computed spectral ratio
and straightline approximation of the spectral ratio (black lines); (lower) amplification
functions as used in the simulations with and without the basin waves, along with the
basin-only amplifications.
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Figure 11. Simulation using frequency-dependent correction to phase given by
envelope delay of the 1990 Upland, California, earthquake recorded at station S3E, as
well as the relative site response as discussed in the text. Shown are the acceleration,
velocity, and displacement of the simulations (with and without basin amplification and
envelope delay), and the observed motions at S3E from the 1990 Upland earthquake (74
km epicentral distance and M 5.6).


